LMU :

Non-commutative closed string geometry from flux compactifications
Dieter Lüst, LMU (Arnold Sommerfeld Center) and MPI München

LMU

Non-commutative closed string geometry from flux compactifications
Dieter Lüst, LMU (Arnold Sommerfeld Center) and MPI München

SUPERFIELDS

European Research Council
Adv. Inv. Grant no. 226455

Padova, I8. March 20II

I) Introduction

Closed string flux compactifications:

- Moduli stabilization \Rightarrow string landscape
- AdS/CFT correspondence
- Generalized geometries
- Here: closed string non-commutative (non-associative) geometry

Non-commutative geometry and string theory (a):

Open strings:
2-dimensional D-branes with 2-form F-flux \Rightarrow coordinates of open string end points become non-commutative:

$$
\left[X_{i}(\tau), X_{j}(\tau)\right]=\epsilon_{i j} \Theta, \quad \Theta=-\frac{2 \pi i \alpha^{\prime} F}{1+F^{2}}
$$

(A.Abouelsaood, C. Callan, C. Nappi, S.Yost (I987);
J. Fröhlich, K. Gawedzki (I993);V. Schomerus (I999);)

Non-commutative geometry and string theory (a):

Open strings:
2-dimensional D-branes with 2-form F-flux \Rightarrow coordinates of open string end points become non-commutative:

$$
\left[X_{i}(\tau), X_{j}(\tau)\right]=\epsilon_{i j} \Theta, \quad \Theta=-\frac{2 \pi i \alpha^{\prime} F}{1+F^{2}}
$$

Non-commutative geometry and string theory (a):

Open strings:
2-dimensional D-branes with 2-form F-flux \Rightarrow
coordinates of open string end points become non-commutative:

$$
\begin{aligned}
& {\left[X_{i}(\tau), X_{j}(\tau)\right]=\epsilon_{i j} \Theta, \quad \Theta=-\frac{2 \pi i \alpha^{\prime} F}{1+F^{2}}} \\
& \text { constant } \\
& \Theta=-\frac{2 \pi i \alpha^{\prime} F}{1+F^{2}} \\
& \text { (A.Abouelsaood, C. Callan, C. Nappi, S.Yost (I987); } \\
& \text { J. Fröhlich, K. Gawedzki (I993);V. Schomerus (I999);) }
\end{aligned}
$$

$>$ Non-commutative gauge theories.
(N. Seiberg, E.Witten (I999); J. Madore, S. Schraml, P. Schupp, J. Wess (2000);)

Moyal-Weyl \star - product:

$$
f_{1}(x) \star f_{2}(x) \star \ldots \star f_{N}(x):=
$$

$$
\begin{gathered}
\left.\exp \left[i \sum_{m<n} \Theta^{a b} \partial_{a}^{x_{m}} \partial_{b}^{x_{n}}\right] f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right) \ldots f_{N}\left(x_{N}\right)\right|_{x_{1}=\ldots=x_{N}=x} \\
S \simeq \int d^{n} x \operatorname{Tr} \hat{F}_{a b} \star \hat{F}^{a b}
\end{gathered}
$$

Non-commutative geometry and string theory (b):
Closed strings:
3-dimensional backgrounds with 3-form flux \Rightarrow

Non-commutative geometry and string theory (b):
Closed strings:
3-dimensional backgrounds with 3-form flux \Rightarrow we will show that coordinates of closed strings become non-commutative:
(D.L., arXiv:IOIO.I36I)

$$
\left[X_{i}(\tau, \sigma), X_{j}(\tau, \sigma)\right] \simeq F_{i j k}^{(3)} p^{k}
$$

Non-commutative geometry and string theory (b):
Closed strings:
3-dimensional backgrounds with 3-form flux \Rightarrow
we will show that coordinates of closed strings become non-commutative:
(D.L., arXiv:IOIO.I36I)

$$
\left[X_{i}(\tau, \sigma), X_{j}(\tau, \sigma)\right] \simeq F_{i j k}^{(3)} p^{k}
$$

Non-commutative geometry and string theory (b):
Closed strings:
3-dimensional backgrounds with 3-form flux \Rightarrow we will show that coordinates of closed strings become non-commutative:
(D.L., arXiv:IOIO.I36I)

$$
\left[X_{i}(\tau, \sigma), X_{j}(\tau, \sigma)\right] \simeq F_{i j k}^{(3)} p^{k}
$$

and even non-associative: operator
(R. Blumenhagen, E. Plauschinn, arXiv:IOIO.I263)

$$
\left[\left[X_{i}(\tau, \sigma), X_{j}(\tau, \sigma)\right], X_{k}(\tau, \sigma)\right]+\text { perm. } \simeq F_{i j k}^{(3)}
$$

$>$ Non-commutative/non-associative gravity?

Non-commutative geometry and string theory (b):
Closed strings:
3-dimensional backgrounds with 3-form flux \Rightarrow we will show that coordinates of closed strings become non-commutative:
(D.L., arXiv:IOIO.I36I)

$$
\left[X_{i}(\tau, \sigma), X_{j}(\tau, \sigma)\right] \simeq F_{i j k}^{(3)} p^{k}
$$

and even non-associative: operator
(R. Blumenhagen, E. Plauschinn, arXiv:IOIO.I263)

Outline:

II) T-duality
III) Non-commutative geometry
IV) Algebraic structure and new uncertainty relations
V) Outlook (non-associative gravity)

II) T-duality

How does a closed string see geometry?

Consider compactification on a circle with radius R :

$$
\begin{gathered}
X(\tau, \sigma)=X_{L}(\tau+\sigma)+X_{R}(\tau-\sigma) \\
X_{L}(\tau+\sigma)=\frac{x}{2}+p_{L}(\tau+\sigma)+i \sqrt{\frac{\alpha^{\prime}}{2}} \sum_{n \neq 0} \frac{1}{n} \alpha_{n} e^{-i n(\tau+\sigma)}, \\
X_{R}(\tau-\sigma)=\frac{x}{2}+p_{R}(\tau-\sigma)+i \sqrt{\frac{\alpha^{\prime}}{2}} \sum_{n \neq 0} \frac{1}{n} \tilde{\alpha}_{n} e^{-i n(\tau-\sigma)} \quad \text { (KK momenta } \\
p_{L}=\frac{1}{2}\left(\frac{M}{R}+\left(\alpha^{\prime}\right)^{-1} N R\right), \quad p=p_{L}+p_{R}=\frac{M}{R} \\
p_{R}=\frac{1}{2}\left(\frac{M}{R}-\left(\alpha^{\prime}\right)^{-1} N R\right) \quad \begin{array}{l}
\tilde{p}=p_{L}-p_{R}=\left(\alpha^{\prime}\right)^{-1} N R \\
\text { (dual momenta - winding modes) }
\end{array}
\end{gathered}
$$

T-duality: $M \longleftrightarrow N$ $T: \quad p \longleftrightarrow \tilde{p}, \quad p_{L} \longleftrightarrow p_{L},, \quad p_{R} \longleftrightarrow-p_{R}$.

- Dual space coordinates: $\tilde{X}(\tau, \sigma)=X_{L}-X_{R}$
$(X, \tilde{X}): \quad$ Doubled geometry:
(O. Hohm, C. Hull, B. Zwiebach (2009/I0))

T-duality is part of diffeomorphism group.
$T: \quad X \longleftrightarrow \tilde{X}, \quad X_{L} \longleftrightarrow X_{L}, \quad X_{R} \longleftrightarrow-X_{R}$

- Shortest possible radius: $\quad R \geq R_{c}=\sqrt{\alpha^{\prime}}$

Compactification on a 2-dimensional torus:
Background: $\quad R_{1}, R_{2}, e^{i \alpha}, B$
2 complex

$$
\tau=\frac{e_{2}}{e_{1}}=\frac{R_{2}}{R_{1}} e^{i \alpha}
$$

parameters: $\quad \rho=B+i R_{1} R_{2} \sin \alpha$.
T-duality transformations:

- $S L(2, \mathbb{Z})_{\tau}: \quad \tau \rightarrow \frac{a \tau+b}{c \tau+d}$
- $S L(2, \mathbb{Z})_{\rho}: \quad \rho \rightarrow \frac{a \rho+b}{c \rho+d}$

They act as shifts/rotations on doubled coordinates.

- T-duality in $x_{1} \Leftrightarrow$ Mirror symmetry:

$$
\tau \leftrightarrow \rho \Longleftrightarrow B \leftrightarrow \Re \tau
$$

Three-dimensional backgrounds \Rightarrow twisted 3-tori:
(A. Dabholkar, C. Hull (2003) ; S. Hellerman, J. McGreevy, B.Williams (2004); J. Derendinger,
C. Kounnas, P. Petropoulos, F. Zwirner (2004); J. Shelton,W.Taylor, B.Wecht (2005); G. Dall'Agata, S. Ferrara (2005)...)

Fibrations: 2-dim. torus that varies over a circle:

$$
T_{x^{1}, x^{2}}^{2} \hookrightarrow M^{3} \hookrightarrow S_{x^{3}}^{1}
$$

The fibration is specified by its monodromy properties.

Three-dimensional backgrounds \Rightarrow twisted 3-tori:
(A. Dabholkar, C. Hull (2003) ; S. Hellerman, J. McGreevy, B.Williams (2004); J. Derendinger,
C. Kounnas, P. Petropoulos, F. Zwirner (2004); J. Shelton, W.Taylor, B.Wecht (2005); G. Dall'Agata, S. Ferrara (2005)...)

Fibrations: 2-dim. torus that varies over a circle:

$$
T_{x^{1}, x^{2}}^{2} \hookrightarrow M^{3} \hookrightarrow S_{x^{3}}^{1}
$$

The fibration is specified by its monodromy properties.
Two (T-dual) cases:
(i) Geometric spaces (manifolds)

$$
x^{3} \rightarrow x^{3}+2 \pi \Rightarrow \tau\left(x^{3}+2 \pi\right)=\frac{a \tau\left(x^{3}\right)+b}{c \tau\left(x^{3}\right)+d}
$$

Thr

$$
\tau\left(x^{3}+2 \pi\right)=-1 / \tau\left(x^{3}\right)
$$

ori:
-ara (2005)...)

Fibratio

The fib
Two (T.
(i)
x^{2}

ties.
$\frac{)+b}{1+d}$

Three-dimensional backgrounds \Rightarrow twisted 3-tori:
(A. Dabholkar, C. Hull (2003) ; S. Hellerman, J. McGreevy, B.Williams (2004); J. Derendinger,
C. Kounnas, P. Petropoulos, F. Zwirner (2004); J. Shelton, W.Taylor, B.Wecht (2005); G. Dall'Agata, S. Ferrara (2005)...)

Fibrations: 2-dim. torus that varies over a circle:

$$
T_{x^{1}, x^{2}}^{2} \hookrightarrow M^{3} \hookrightarrow S_{x^{3}}^{1}
$$

The fibration is specified by its monodromy properties.
Two (T-dual) cases:
(i) Geometric spaces (manifolds)

$$
x^{3} \rightarrow x^{3}+2 \pi \Rightarrow \tau\left(x^{3}+2 \pi\right)=\frac{a \tau\left(x^{3}\right)+b}{c \tau\left(x^{3}\right)+d}
$$

Three-dimensional backgrounds \Rightarrow twisted 3-tori:
(A. Dabholkar, C. Hull (2003) ; S. Hellerman, J. McGreevy, B.Williams (2004); J. Derendinger,
C. Kounnas, P. Petropoulos, F. Zwirner (2004); J. Shelton, W.Taylor, B. Wecht (2005); G. Dall'Agata, S. Ferrara (2005)...)

Fibrations: 2-dim. torus that varies over a circle:

$$
T_{x^{1}, x^{2}}^{2} \hookrightarrow M^{3} \hookrightarrow S_{x^{3}}^{1}
$$

The fibration is specified by its monodromy properties.
Two (T-dual) cases:
(i) Geometric spaces (manifolds)

$$
x^{3} \rightarrow x^{3}+2 \pi \Rightarrow \tau\left(x^{3}+2 \pi\right)=\frac{a \tau\left(x^{3}\right)+b}{c \tau\left(x^{3}\right)+d}
$$

(ii) Non-geometric spaces (T-folds)

$$
x^{3} \rightarrow x^{3}+2 \pi \Rightarrow \rho\left(x^{3}+2 \pi\right)=\frac{a \rho\left(x^{3}\right)+b}{c \rho\left(x^{3}\right)+d}
$$

$$
\rho\left(x^{3}+2 \pi\right)=-1 / \rho\left(x^{3}\right)
$$

tori:
2r,
rrara (2005)...)

Fib

-ties.
$\frac{\left.{ }^{3}\right)+b}{\left.{ }^{3}\right)+d}$
$+b$
$\overline{+d}$

Three-dimensional backgrounds \Rightarrow twisted 3-tori:
(A. Dabholkar, C. Hull (2003) ; S. Hellerman, J. McGreevy, B.Williams (2004); J. Derendinger,
C. Kounnas, P. Petropoulos, F. Zwirner (2004); J. Shelton, W.Taylor, B. Wecht (2005); G. Dall'Agata, S. Ferrara (2005)...)

Fibrations: 2-dim. torus that varies over a circle:

$$
T_{x^{1}, x^{2}}^{2} \hookrightarrow M^{3} \hookrightarrow S_{x^{3}}^{1}
$$

The fibration is specified by its monodromy properties.
Two (T-dual) cases:
(i) Geometric spaces (manifolds)

$$
x^{3} \rightarrow x^{3}+2 \pi \Rightarrow \tau\left(x^{3}+2 \pi\right)=\frac{a \tau\left(x^{3}\right)+b}{c \tau\left(x^{3}\right)+d}
$$

(ii) Non-geometric spaces (T-folds)

$$
x^{3} \rightarrow x^{3}+2 \pi \Rightarrow \rho\left(x^{3}+2 \pi\right)=\frac{a \rho\left(x^{3}\right)+b}{c \rho\left(x^{3}\right)+d}
$$

Two different kind of monodromies for the fibrations:
(i) elliptic monodromies: finite order

$$
\begin{gathered}
S L(2, \mathbb{Z})_{\tau}, S L(2, \mathbb{Z})_{\rho}: \quad\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \\
\text { order } 4
\end{gathered}
$$

(ii) parabolic monodromies: infinite order

$$
S L(2, \mathbb{Z})_{\tau}, S L(2, \mathbb{Z})_{\rho}: \quad\left(\begin{array}{ll}
1 & n \\
0 & 1
\end{array}\right) \text { or }\left(\begin{array}{ll}
1 & 0 \\
n & 1
\end{array}\right)
$$

Both types in general contain geometric spaces as well as non-geometric backgrounds.

III) Non-commutative geometry

3.1) Open strings on D2-branes:
(i) D2-branes with gauge F-flux $\partial_{\sigma} X_{1}+F_{12} \partial_{\tau} X_{2}=0$,

Mixed D/N boundary conditions: $\partial_{\sigma} X_{2}-F_{12} \partial_{\tau} X_{1}=0$

$$
\left[X_{1}(\tau, 0), X_{2}(\tau, 0)\right]=-\frac{2 \pi i \alpha^{\prime} F_{12}}{1+\left(F_{12}\right)^{2}}
$$

T-duality in X_{1} :

T-duality
\downarrow (Seiberg-Witten map)
(ii) DI-branes at angles N :

$$
\partial_{\sigma} X_{1}+F_{12} \partial_{\sigma} X_{2}=0,
$$

Boundary conditions:

$$
D:
$$

$$
\partial_{\tau} X_{2}-F_{12} \partial_{\tau} X_{1}=0
$$

$\left[X_{1}(\tau, 0), X_{2}(\tau, 0)\right]=0 \quad$ Geom. angle: $\nu=\frac{\operatorname{arccot} F_{12}}{\pi}$

Open string CFT with F-flux is exactly solvable \Rightarrow shifted oscillator frequencies:

$$
\begin{gathered}
X_{1}=x_{1}-\sqrt{\alpha^{\prime}} \sum_{n \in Z} \frac{\alpha_{n+\nu}}{n+\nu} e^{-i(n+\nu) \tau} \sin \left[(n+\nu) \sigma+\theta_{1}\right]- \\
\sqrt{\alpha^{\prime}} \sum_{m \in Z} \frac{\alpha_{m-\nu}}{m-\nu} e^{-i(m-\nu) \tau} \sin \left[(m-\nu) \sigma-\theta_{1}\right] \\
X_{2}=x_{2}+\quad i \sqrt{\alpha^{\prime}} \sum_{n \in Z} \frac{\alpha_{n+\nu}}{n+\nu} e^{-i(n+\nu) \tau} \sin \left[(n+\nu) \sigma+\theta_{1}\right]- \\
\\
i \sqrt{\alpha^{\prime}} \sum_{m \in Z} \frac{\alpha_{m-\nu}}{m-\nu} e^{-i(m-\nu) \tau} \sin \left[(m-\nu) \sigma-\theta_{1}\right] \\
\nu= \\
\frac{\operatorname{arCCOt} F_{12}}{\pi}
\end{gathered}
$$

3.2) Closed strings on a 3-dim. space:

Can the closed string also see a non-commutative space?
What deformation is needed?
Yes: one needs 3-form flux: $H / \omega / Q / R$
3.2) Closed strings on a 3-dim. space:

Can the closed string also see a nor NS H-flux jue space?
What deformation is needed?
Yes: one needs 3-form flux: $H / \omega / Q / R$
3.2) Closed strings on a 3-dim. space:

Yes: one needs 3 -form flux: $\mathrm{H} / \omega / \mathrm{Q} / \mathrm{R}$
3.2) Closed strings on a 3-dim. space:

Can the closed string also see a non-com non-
What deformation is needed?
Yes: one needs 3-form flux: $H / \omega / Q / R$
3.2) Closed strings on a 3-dim. space:

Can the closed string also see a non-commu
What deformation is needed?
Yes: one needs 3-form flux: $H / \omega / Q / R$
3.2) Closed strings on a 3-dim. space:

Can the closed string also see a non-commu
What deformation is needed?
Yes: one needs 3-form flux: $H / \omega / Q / R$
(i) Geometric spaces (manifolds)

$$
\left[X^{1}(\tau, \sigma), X^{2}(\tau, \sigma)\right]=0
$$

3.2) Closed strings on a 3-dim. space:

Can the closed string also see a non-commy
What deformation is needed?
Yes: one needs 3-form flux: $H / \omega / Q / R$
(i) Geometric spaces (manifolds)

$$
\left[X^{1}(\tau, \sigma), X^{2}(\tau, \sigma)\right]=0
$$

(ii) Non-geometric spaces (T-folds)
\downarrow T-duality

$$
\left[X^{1}(\tau, \sigma), X^{2}(\tau, \sigma)\right] \neq 0
$$

3.2) Closed strings on a 3-dim. space:

Can the closed string also see a non-commy
What deformation is needed?
Yes: one needs 3-form flux: $H / \omega / Q / R$
(i) Geometric spaces (manifolds)
$\left[X^{1}(\tau, \sigma), X^{2}(\tau, \sigma)\right]=0\left(\left[X^{1}(\tau, \sigma), \tilde{X}^{2}(\tau, \sigma)\right] \neq 0\right)$
(ii) Non-geometric spaces (T-folds) \downarrow T-duality

$$
\left[X^{1}(\tau, \sigma), X^{2}(\tau, \sigma)\right] \neq 0
$$

More general:
Doubled geometry: Closed string non-commutativity in (X, \tilde{X})-space

Problem:

- Background is non-constant.
- CFT is in general not exactly solvable

Ways to handle:

- Study SU(2) WZW model with H-flux
(R. Blumenhagen, E. Plauschinn, arXiv:IOIO.I263)
- Consider sigma model perturbation theory for small H-field
(R. Blumenhagen, A. Deser, D.L., E. Plauschinn, work in progress)
- Consider monodromy properties and the corresponding closed string boundary conditions
\Rightarrow Shifted closed string mode expansion

Specific example: elliptic monodromy

(i) Geometric space (ω-flux) $\quad\left(\omega_{123} \sim \partial_{x^{3}} g_{x^{1} x^{2}} \sim \partial_{x^{3}} \Re \tau\left(x^{3}\right)\right)$

$$
\tau\left(x^{3}\right)=\frac{(1+i) \cos \left(H x^{3}\right)+\sin \left(H x^{3}\right)}{\cos \left(H x^{3}\right)-(1+i) \sin \left(H x^{3}\right)} \quad\left(H \in \frac{1}{4}+\mathbb{Z}\right)
$$

Monodromy: $\tau\left(x^{3}+2 \pi\right)=-1 / \tau\left(x^{3}\right)$

S

$$
\tau\left(x^{3}+2 \pi\right)=-1 / \tau\left(x^{3}\right)
$$

$$
\left(\omega_{123} \sim \partial_{x^{3}} g_{x^{1} x^{2}} \sim \partial_{x^{3}} \Re \tau\left(x^{3}\right)\right)
$$

i

$\left.\frac{1}{4}+\mathbb{Z}\right)$

Specific example: elliptic monodromy

(i) Geometric space (ω-flux) $\quad\left(\omega_{123} \sim \partial_{x^{3}} g_{x^{1} x^{2}} \sim \partial_{x^{3}} \Re \tau\left(x^{3}\right)\right)$

$$
\tau\left(x^{3}\right)=\frac{(1+i) \cos \left(H x^{3}\right)+\sin \left(H x^{3}\right)}{\cos \left(H x^{3}\right)-(1+i) \sin \left(H x^{3}\right)} \quad\left(H \in \frac{1}{4}+\mathbb{Z}\right)
$$

Monodromy: $\tau\left(x^{3}+2 \pi\right)=-1 / \tau\left(x^{3}\right)$

Specific example: elliptic monodromy
(i) Geometric space $(\omega$-flux $) \quad\left(\omega_{123} \sim \partial_{x^{3}} g_{x^{1} x^{2}} \sim \partial_{x^{3}} \Re \tau\left(x^{3}\right)\right)$
$\tau\left(x^{3}\right)=\frac{(1+i) \cos \left(H x^{3}\right)+\sin \left(H x^{3}\right)}{\cos \left(H x^{3}\right)-(1+i) \sin \left(H x^{3}\right)} \quad\left(H \in \frac{1}{4}+\mathbb{Z}\right)$
Monodromy: $\tau\left(x^{3}+2 \pi\right)=-1 / \tau\left(x^{3}\right)$
This induces the following \mathbb{Z}_{4} symmetric closed string boundary condition: winding

$$
\begin{aligned}
& X^{3}(\tau, \sigma+2 \pi)=X^{3}(\tau, \sigma)+2 \pi N_{3} \\
& X_{L}(\tau, \sigma+2 \pi)=e^{i \theta} X_{L}(\tau, \sigma), \quad \theta=-2 \pi N_{3} H \\
& X_{R}(\tau, \sigma+2 \pi)=e^{i \theta} X_{R}(\tau, \sigma) . \\
& \quad \text { (Complex coordinates: } X_{L, R}=X_{L, R}^{1}+i X_{L, R}^{2} \text {) order 4 rotation }
\end{aligned}
$$

Corresponding closed string mode expansion \Rightarrow

$$
\begin{aligned}
& X_{L}(\tau+\sigma)=i \sqrt{\frac{\alpha^{\prime}}{2}} \sum_{n \in \mathbb{Z}} \frac{1}{n-\nu} \alpha_{n-\nu} e^{-i(n-\nu)(\tau+\sigma)}, \quad \nu=\frac{\theta}{2 \pi}=-N_{3} H, \\
& X_{R}(\tau-\sigma)=i \sqrt{\frac{\alpha^{\prime}}{2}} \sum_{n \in \mathbb{Z}} \frac{1}{n+\nu} \tilde{\alpha}_{n+\nu} e^{-i(n+\nu)(\tau-\sigma)} \text { (shifted oscillators!) }
\end{aligned}
$$

Then one obtains:

$$
\begin{aligned}
& {\left[X_{L}(\tau, \sigma), \bar{X}_{L}(\tau, \sigma)\right]=-\left[X_{R}(\tau, \sigma), \bar{X}_{R}(\tau, \sigma)\right]=\tilde{\Theta}} \\
& \tilde{\Theta}=\alpha^{\prime} \sum_{n \in \mathbb{Z}} \frac{1}{n-\nu}=-\alpha^{\prime} \pi \cot \left(\pi N_{3} H\right) \\
& {\left[X^{1}(\tau, \sigma), X^{2}(\tau, \sigma)\right]=\left[X_{L}^{1}+X_{R}^{1}, X_{L}^{2}+X_{R}^{2}\right]=0}
\end{aligned}
$$

T-dual geometry (mirror symmetry): $\tau\left(x^{3}\right) \leftrightarrow \rho\left(x^{3}\right)$ (ii) Non-geometric space (Q-flux)
$\rho\left(x^{3}\right)=\frac{(1+i) \cos \left(H x^{3}\right)+\sin \left(H x^{3}\right)}{\cos \left(H x^{3}\right)-(1+i) \sin \left(H x^{3}\right)} \quad\left(H \in \frac{1}{4}+\mathbb{Z}\right)$
$\Rightarrow \quad \mathrm{H}$-field: $H\left(x^{3}\right)=H \frac{10-12 \sin \left(2 H x^{3}\right)-6 \cos \left(2 H x^{3}\right)}{\left(2 \sin \left(2 H x^{3}\right)+\cos \left(2 H x^{3}\right)-3\right)^{2}}$
Monodromy: $\quad \rho\left(x^{3}+2 \pi\right)=-1 / \rho\left(x^{3}\right)$

$$
\begin{equation*}
\rho\left(x^{3}+2 \pi\right)=-1 / \rho\left(x^{3}\right) \tag{3}
\end{equation*}
$$

(i
$\rho \mid$

T-dual geometry (mirror symmetry): $\tau\left(x^{3}\right) \leftrightarrow \rho\left(x^{3}\right)$ (ii) Non-geometric space (Q-flux)
$\rho\left(x^{3}\right)=\frac{(1+i) \cos \left(H x^{3}\right)+\sin \left(H x^{3}\right)}{\cos \left(H x^{3}\right)-(1+i) \sin \left(H x^{3}\right)} \quad\left(H \in \frac{1}{4}+\mathbb{Z}\right)$
$\Rightarrow \quad \mathrm{H}$-field: $H\left(x^{3}\right)=H \frac{10-12 \sin \left(2 H x^{3}\right)-6 \cos \left(2 H x^{3}\right)}{\left(2 \sin \left(2 H x^{3}\right)+\cos \left(2 H x^{3}\right)-3\right)^{2}}$
Monodromy: $\quad \rho\left(x^{3}+2 \pi\right)=-1 / \rho\left(x^{3}\right)$

T-dual geometry (mirror symmetry): $\tau\left(x^{3}\right) \leftrightarrow \rho\left(x^{3}\right)$ (ii) Non-geometric space (Q-flux)

$$
\rho\left(x^{3}\right)=\frac{(1+i) \cos \left(H x^{3}\right)+\sin \left(H x^{3}\right)}{\cos \left(H x^{3}\right)-(1+i) \sin \left(H x^{3}\right)} \quad\left(H \in \frac{1}{4}+\mathbb{Z}\right)
$$

\Rightarrow H-field: $H\left(x^{3}\right)=H \frac{10-12 \sin \left(2 H x^{3}\right)-6 \cos \left(2 H x^{3}\right)}{\left(2 \sin \left(2 H x^{3}\right)+\cos \left(2 H x^{3}\right)-3\right)^{2}}$
Monodromy: $\quad \rho\left(x^{3}+2 \pi\right)=-1 / \rho\left(x^{3}\right)$
This induces the following \mathbb{Z}_{4} asymmetric closed string boundary condition:

$$
X^{3}(\tau, \sigma+2 \pi)=X^{3}(\tau, \sigma)+2 \pi N_{3}
$$

$$
\begin{aligned}
& X_{L}(\tau, \sigma+2 \pi)=e^{i \theta} X_{L}(\tau, \sigma), \quad \theta=-2 \pi N_{3} H, \\
& X_{R}(\tau, \sigma+2 \pi)=e^{-i \theta} X_{R}(\tau, \sigma) . \quad \begin{array}{c}
\text { L-R a-symmetric } \\
\text { order 4 rotation }
\end{array}
\end{aligned}
$$

Corresponding closed string mode expansion \Rightarrow

$$
\begin{aligned}
& X_{L}(\tau+\sigma)=i \sqrt{\frac{\alpha^{\prime}}{2}} \sum_{n \in \mathbb{Z}} \frac{1}{n-\nu} \alpha_{n-\nu} e^{-i(n-\nu)(\tau+\sigma)}, \quad \nu=\frac{\theta}{2 \pi}=-N_{3} H, \\
& X_{R}(\tau-\sigma)=i \sqrt{\frac{\alpha^{\prime}}{2}} \sum_{n \in \mathbb{Z}} \frac{1}{n+\nu} \tilde{\alpha}_{n-\nu} e^{-i(n-\nu)(\tau-\sigma)}
\end{aligned}
$$

Then one finally obtains:
$\left[X_{L}(\tau, \sigma), \bar{X}_{L}(\tau, \sigma)\right]=\left[X_{R}(\tau, \sigma), \bar{X}_{R}(\tau, \sigma)\right]=\tilde{\Theta}$
$\left[X^{1}(\tau, \sigma), X^{2}(\tau, \sigma)\right]=\left[X_{L}^{1}+X_{R}^{1}, X_{L}^{2}+X_{R}^{2}\right]=i \tilde{\Theta}$

T-duality in x^{3} - direction \Rightarrow R-flux
Winding no. $N_{3} \Longleftrightarrow$ Momentum no. M_{3}

$$
\begin{gathered}
{\left[X^{1}(\tau, \sigma), X^{2}(\tau, \sigma)\right]=i \Theta} \\
\Theta=\alpha^{\prime} \sum_{n \in \mathbb{Z}} \frac{1}{n-\nu}=-\alpha^{\prime} \pi \cot \left(\pi M_{3} H\right)
\end{gathered}
$$

Chain of T-dualities:
geom. space:

$$
\left[X^{1}(\tau, \sigma), \tilde{X}^{2}(\tau, \sigma)\right]=i \tilde{\Theta}
$$

$$
\Uparrow \quad T_{x^{2}}
$$

T-fold:

$$
\left[X^{1}(\tau, \sigma), X^{2}(\tau, \sigma)\right]=i \tilde{\Theta}
$$

$$
\mathbb{I} T_{x^{3}}
$$

R-background:

$$
\left[X^{1}(\tau, \sigma), X^{2}(\tau, \sigma)\right]=i \Theta
$$

Parabolic monodromy: (D.Andriot, M. Larfors, D.L.,.Peatalong, work in progeress)

Chain of four T-dual background:
$H_{x^{1} x^{2} x^{3}} \xrightarrow{T_{x^{1}}} \omega_{x^{2} x^{3}}^{x^{1}} \xrightarrow{T_{x^{2}}} Q_{x^{3}}^{x^{1} x^{2}} \xrightarrow{T_{x_{3}}} R^{x_{1} x_{2} x_{3}}$
(i) constant H-field on flat $T^{3}: \quad\left(B_{x^{1} x^{2}}=H x^{3}\right)$
(ii) constant metric flux ω
(iii) non-geometric Q-flux (T-fold)
(iv) R-background (not even locally a manifold)
(J. Shelton, W. Taylor, B. Wecht (2005))

H-background:

$$
\mathbb{I} T_{x^{1}}
$$

ω background:

$$
\text { I } T_{x^{2}}
$$

Q-background:

$$
\mathbb{I} T_{x^{3}}
$$

R-background:

$$
\left[X^{1}(\tau, \sigma), X^{2}(\tau, \sigma)\right]=i \Theta
$$

IV) Algebraic structure and new uncertainty relations

Act on wave functions \Rightarrow replace momentum (winding) numbers by (dual) momentum operator:

$$
M_{3} \equiv \sqrt{\alpha^{\prime}} p^{3}, \quad N_{3} \equiv \sqrt{\alpha^{\prime}} \tilde{p}^{3}
$$

Then one obtains the following non-commutative algebra:

$$
\left[X^{1}, X^{2}\right] \simeq i l_{s}^{3} F^{(3)} p^{3} \quad\left(\left[X^{i}, X^{j}\right] \simeq i \epsilon^{i j k} F^{(3)} p^{k}\right)
$$

Corresponding uncertainty relation:

$$
\left(\Delta X^{1}\right)^{2}\left(\Delta X^{2}\right)^{2} \geq l_{s}^{6}\left(F^{(3)}\right)^{2}\left\langle p^{3}\right\rangle^{2}
$$

$$
\begin{aligned}
& \text { Use } \quad\left[p^{3}, X^{3}\right]=-i \\
& {\left[\left[X^{1}, X^{2}\right], X^{3}\right]+\text { perm. } \simeq F^{(3)} l_{s}^{3}}
\end{aligned}
$$

Non-associative algebra!
This nicely agrees with the non-associative closed string structure found by Blumenhagen, Plauschinn in the $\mathrm{SU}(2) \mathrm{WZW}$ model: arXiv:IOI0.I263

Finally one gets:

$$
\begin{aligned}
\left(\Delta\left[X^{1}, X^{2}\right]\right)^{2}\left(\Delta X^{3}\right)^{2} & \simeq\left(F^{(3)}\right)^{2} l_{s}^{6}\left(\Delta p^{3}\right)^{2}\left(\Delta X^{3}\right)^{2} \\
& \geq\left(F^{(3)}\right)^{2} l_{s}^{6} .
\end{aligned}
$$

V) Outlook

- Is there are non-commutative (non-associative) theory of gravity? Is there a map to commutative gravity (like SW-map for gauge theories)?
(Non-commutative geometry \& gravity: P.Aschieri, M. Dimitrijevic, F. Meyer, J.Wess (2005))
- What is the algebra of closed string states (functions) on this space? Is there something like a Moyal-Weyl \star - product?
(R. Blumenhagen, A. Deser, D.L., E. Plauschinn, work in progress)

Closed string correlation functions \Rightarrow
Non-associative \triangle - product:

$$
\begin{gathered}
f_{1}(y) \triangle f_{2}(y) \triangle \ldots \triangle f_{N}(y):= \\
\left.\exp \left[\sum_{m<n<r} F^{a b c} \partial_{a}^{y_{m}} \partial_{b}^{y_{n}} \partial_{c}^{y_{r}}\right] f_{1}\left(y_{1}\right) f_{2}\left(y_{2}\right) \ldots f_{N}\left(y_{N}\right)\right|_{y_{1}=\ldots=y_{N}=y}
\end{gathered}
$$

