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) Introduction

Closed string flux compactifications:

® Moduli stabilization =  string landscape

® AdS/CFT correspondence

® (Generalized geometries

® Here: closed string non-commutative (non-associative)
geometry




Non-commutative geometry and string theory (a):
Open strings:
2-dimensional D-branes with 2-form F-flux =

coordinates of open string end points become
non-commutative:

2mia’ F
1 4+ F?

(A.Abouelsaood, C. Callan, C. Nappi, S.Yost (1987);
J. Frohlich, K. Gawedzki (1993);V. Schomerus (1999); ....)
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> Non-commutative gauge theories.
(N. Seiberg, E.Witten (1999); ]. Madore, S. Schraml, P. Schupp, J. Wess (2000); ....)

Moyal-Weyl *- product:
fi(x) * fo(x) ... % fy(x):=

exp (1) O 05 O] fr(21) falz2) .. fn(2N)
S~ | d"x Trﬁ’ab*ﬁ’ab
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and even non-associative:

(R. Blumenhagen, E. Plauschinn, arXiv:1010.1263)

| Xi(T,0), X;(T,0)], Xk(T,0)] + perm. =~ Z(jgk)

> Non-commutative/non-associative gravity?
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1) T-duality
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V) Algebraic structure and
new uncertainty relations

V) Outlook (non-associative gravity)




1) T-duality

How does a closed string see geometry?

Consider compactification on a circle with radius R:

X(r,0)=X(t4+0)+ Xgr(T —0)

X s 1 .
Xrp(1T+0) ——I—pL(T—l—O')—I—Z\/?ZECknG in(r+o)

2

n#0
1

~ —n(r—o
—in(r=0)

(KK momenta )

M
PrL + PR = i)
= pr—pr=(/)"'NR

(dual momenta - winding modes)




T-duality: l': R M «—— N

1 p [jv PL <~ PL,y PR* > —PR -

e Dual space coordinates: X (7,0) = X — Xg

(X, X) : Doubled geometry:

(O.Hohm, C. Hull, B. Zwiebach (2009/10))

T-duality is part of diffeomorphism group.

~

T: X «— X, Xp+«— X, Xp+— —XR

e Shortest possible radius: R > R. = vV o/




Compactification on a 2-dimensional torus:
. 101
Background: R, R, e, B
2 complex
background

parameters: 0 = B+ iR Rysina.

T-duality transformations:
at + b

® SL(Q,Z)T T = CT—l—d
~ap+b
ep—+d
They act as shifts/rotations on doubled coordinates.

o SL(2,Z),: /P

® J[-duality in &1 & Mirror symmetry:

T p << B < N7




Three-dimensional backgrounds = twisted 3-tori:

(A. Dabholkar, C. Hull (2003) ; S. Hellerman, . McGreevy, B.Williams (2004); ]. Derendinger,
C. Kounnas, P. Petropoulos, F. Zwirner (2004); J. Shelton,W.Taylor, B.Wecht (2005); G. Dall‘Agata, S. Ferrara (2005)...)

Fibrations: 2-dim. torus that varies over a circle:

2 3 1
Txl,xQ — M — S:U3

The fibration is specified by its monodromy properties.
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Two different kind of monodromies for the fibrations:

(i) elliptic monodromies: finite order

SL(2,7),,SL(2,Z), : (_01 é) or (Cf _11>

order 4 order 6

(i) parabolic monodromies: infinite order

SL(2,Z),,SL(2,7), ((1) 7;) . (1 0)

n 1

Both types in general contain geometric spaces as
well as non-geometric backgrounds.




lIl) Non-commutative geometry

3.1) Open strings on D2-branes:

(i) D2-branes with gauge F-flux 0,X; + F120: X5

Mixed D/N boundary conditions: 0o X2 — F120-- X,

2mia Fg T-duality
1+ (F12)? I (Seiberg-Witten
T-duality in X : map)

[Xl(T, O),XQ(T, O)] —

(ii)BD I -Cl?ranes atlgpgles N - 0o X1+ F120,Xs = 0,
oundary conditions: 0.Xo — F100-X; = 0.

X1(7,0), X2(7,0)] =0 Geom.angle: v = arccot Fi

T




Open string CFT with F-flux is exactly solvable =

shifted oscillator frequencies:

\/— Z CVn—I—l/ —z(n—l—u)T Sm[(n 4 V)O' 4 91] o

n 1%
nesz ™

Va3 et om0 il - ) 6]

mes

Z\/_ Z Ckn—l—l/ —z(n—I—V)T Sm[(n 4 V)O' 4 91] o

n 1%
nez ™

iva Z ;im__yye_i(m_”)T sin[(m — v)o — 64].

meZ

(A.Abouelsaood, C. Callan, C. Nappi, S.Yost (1987);
C. Chu, P.Ho (1999))

arccot Fio

U/ —
T




3.2) Closed strings on a 3-dim. space:

Can the closed string also see a non-commutative space?

What deformation is needed?

Yes: one needs 3-form flux; H/W/Q/R
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3.2) Closed strings on a 3-dim. space:

Can the closed string also see a non-comm

What deformation is needed!?
Yes: one needs 3-form flux: H/W/Q/R

(i) Geometric spaces (manifolds)

XY7,0),X%(1,0)] =0 ([X (T, O'),X2(T, o) # 0)

(i) Non-geometric spaces (I-folds) i T-duality
(X (7,0), X7(7,0)] # 0

More general:

Doubled geometry:  Closed string non-commutativity

in (X, X)-space




Problem:

® Background is non-constant.

e CFT is in general not exactly solvable

Ways to handle:
e Study SU(2) WZW model with H-flux

(R. Blumenhagen, E. Plauschinn, arXiv:1010.1263)

e Consider sigma model perturbation theory
for small H-field

(R. Blumenhagen, A. Deser, D.L., E. Plauschinn, work in progress)

® Consider monodromy properties and the
corresponding closed string boundary conditions

= Shifted closed string mode expansion




Specific example: elliptic monodromy

C. Hull, R. Reid-Edwards (2009))

(i) Geometric space (w-flux ) (wizs ~ 0psgpize ~ OpaRr(2°))

1+ 1) cos(Hx?) + sin(Hz?) e 1 o

T(2°) = (

cos(Hz3) — (1 + 7) sin(Hx?) ( 1 )
Monodromy: 7‘(563 + 27) = —1/7'@3)




- h A %
Q’(X ) 1-Edwards (2009))

(W123 ~ Ug3(gplg2 7 aa:?’%T(xS))
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Specific example: elliptic monodromy

C. Hull, R. Reid-Edwards (2009))

(i) Geometric space (w-flux ) (wizs ~ 0psgpize ~ OpaRr(2°))

(1 + 1) cos(Hz?) + sin(Hzx?) 1
cos(Hx3) — (1 4 7) sin(Hz?)

Monodromy: 7‘(513‘3 + 27) = —1/7@3)

T(x?) =

(HEZ+@

This induces the following 7., symmetric
closed string boundary condition: winding

‘ ‘ ‘/nlmber
X (1,0 +27) = X°(1,0) + 27 N3
Xp(r,o+27) = ePXy(r,0), 0=—-2nN3H,

)(R(7'7 o -+ 27-() - GzQXR(T, O') . L-R symmetljic
order 4 rotation
(Complex coordinates: X, p = X7 p +iX] 5 )




Corresponding closed string mode expansion =

o’ 1 : 0
. nd —i(n—v)(740) 7
Xp(t+ o) i1/ 5 nEEZn_Vozn_,/e : V== NsH ,

o 1 :
o . [ ~ —i(n+v)(t—0) . .
Xr(T = 0) WG D Gne (shifted oscillators!)
nez

Then one obtains:

— — ~

Xp(r,0), Xp(1,0)] = —|XR(1,0), XR(1,0)] =6

1
O =a Z = —a'mwcot(mN3H)
n— v

nez

X' (1,0),X*(1,0)] =X} + Xp, X7 + X5] =0




T-dual geometry (mirror symmetry): 7'(333) — ,0(333)
(i) Non-geometric space (Q-flux)
5. (1+1)cos(Hx?) + sin(Hx?) 1
= He-+7%7
PE) = S H) — (14 O sim(H2?) B S +2)

10 — 12sin(2Hz?) — 6 cos(2H z?)
(2sin(2Hz3) + cos(2Hz3) — 3)?

= H-field: H(z*)=H

Monodromy: ,0(5133 + 27) = _1/:0(373)
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T-dual geometry (mirror symmetry): T(il?d) — ,0(333)

(i) Non-geometric space (Q-flux)

5. (14+7)cos(Ha?) + sin(Hz?) 1
PE) = sl — (1t D sim(Hz?) H S T2

10 — 12sin(2Hz?) — 6 cos(2H z?)
(2sin(2Hx?) + cos(2H z3) — 3)?

Monodromy: ,0(:153 + 27) = _1/:0(373)

= H-field: H(z*)=H

This induces the following 7, asymmetric
closed string boundary condition:

X (1,0 +27) = X°(1,0) + 27 N3
Xp(1,0 + 2m) e’Xp(r,0), 0= —2nN3H,

XR(T, o -+ 27’(‘) G_ZHXR(T, O') | L-R a-symmetric

order 4 rotation




Corresponding closed string mode expansion =

% 1 :
. [ —i(n—v)(t40)
Xp(t+0) i1/ > Zn_yan_ye :
nez
Xp(r—0) = i) %S — e i)
2 nez nrv

Then one finally obtains:

~

Xi(r,0), Xr(7,0)] = [ Xgr(7,0), Xg(1,0)] = ©

(X'(1,0),X%(1,0)] = [X] + Xp, X} + X3] = i©




T-duality in z” - direction = R-flux

Winding no. /N3 <= Momentum no. M3
X (7, 0), X(r, 0)] = i©

1
©=a Z = —a'mcot(mMsH)
n—v

nez
Chain of T-dualities:

geom. space:




Pa, rabOI iC mon Od ro my: (D.Andriot, M. Larfors, D.L., P. Patalong, work in progress)

Chain of four T-dual background:

1 T:Ij3

(i) constant H-field on flat 7% :  (Bgi,2 = HCE&)

(i) constant metric flux w

(iii) non-geometric Q-flux (T-fold)

(iv) R-background (not even locally a manifold)

(J- Shelton,W.Taylor, B.Wecht (2005))




H-background:
T T

w background:

T T

Q-background:
()
R-background: X' 7,0),X%(1,0)] =6




V) Algebraic structure and
new uncertainty relations

Act on wave functions = replace momentum (winding)

numbers by (dual) momentum operator:

Mgz\/api%, Ngz@ﬁg

Then one obtains the following non-commutative algebra:

(X1, X2 ~il2F®) p3 ([XF, X7 o i B ph)

Corresponding uncertainty relation:

(AX1)2(AX?)? 2 (FP)? (p°)?




Use [p°, X°] = —i

— [ X!, X?], X3] + perm. ~ F®) 3

Non-associative algebra!

This nicely agrees with the non-associative closed

string structure found by Blumenhagen, Plauschinn in
the SU(2) WZW model: arXiv:1010.1263

Finally one gets:

(A[X', X?])" (AX?)?




V) Outlook

® |s there are non-commutative (non-associative)
theory of gravity! Is there a map to
commutative gravity (like SWW-map for gauge
theories)?

(Non-commutative geometry & gravity: P.Aschieri, M. Dimitrijevic, F Meyer, ].Wess (2005))

® What is the algebra of closed string states
(functions) on this space? Is there something like
a Moyal-Weyl *x- product!?

(R. Blumenhagen, A. Deser, D.L., E. Plauschinn, work in progress)

Closed string correlation functions =

Non-associative /\ - product:

) A fa(y) A A fa(y) o=
€xXp [Zm<n<fr Fabc agm agnagﬂ fl (yl) f2<y2) c. fN(yN)

Yyi=...=YnNn=Y




